Backward selfsimilar solutions of supercritical parabolic equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Backward selfsimilar solutions of supercritical parabolic equations

We consider the exponential reaction–diffusion equation in space-dimension n ∈ (2, 10). We show that for any integer k ≥ 2 there is a backward selfsimilar solution which crosses the singular steady state k-times. The sameholds for the power nonlinearity if the exponent is supercritical in the Sobolev sense and subcritical in the Joseph–Lundgren sense. © 2008 Elsevier Ltd. All rights reserved.

متن کامل

Backward Uniqueness for Parabolic Equations

It is shown that a function u satisfying |∂t + u| M (|u| + |∇u|), |u(x, t)| MeM|x| in (R \ BR) × [0, T ] and u(x, 0) = 0 for x ∈ R \ BR must vanish identically in R \ BR × [0, T ].

متن کامل

Homogenization of forward-backward parabolic equations

We study the homogenization of the equation R(εx) ∂uε ∂t −∆uε = f , where R is a periodic function which may vanish or change sign, with appropriate initial/final conditions. The main tool is a compactness result for sequences of functions which have bounded norms in the spaces associated to the problems.

متن کامل

Linear Stability of Selfsimilar Solutions of Unstable Thin-film Equations

We study the linear stability of selfsimilar solutions of long-wave unstable thin-film equations with power-law nonlinearities ut = −(u nuxxx + u mux)x 0 < n < 3, n ≤ m Steady states, which exist for all values of m and n above, are shown to be stable if m ≤ n + 2 when 0 < n ≤ 2, marginally stable if m ≤ n + 2 when 2 < n < 3 and unstable otherwise. Dynamical selfsimilar solutions are known to e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2009

ISSN: 0893-9659

DOI: 10.1016/j.aml.2008.07.018