Backward selfsimilar solutions of supercritical parabolic equations
نویسندگان
چکیده
منابع مشابه
Backward selfsimilar solutions of supercritical parabolic equations
We consider the exponential reaction–diffusion equation in space-dimension n ∈ (2, 10). We show that for any integer k ≥ 2 there is a backward selfsimilar solution which crosses the singular steady state k-times. The sameholds for the power nonlinearity if the exponent is supercritical in the Sobolev sense and subcritical in the Joseph–Lundgren sense. © 2008 Elsevier Ltd. All rights reserved.
متن کاملBackward Uniqueness for Parabolic Equations
It is shown that a function u satisfying |∂t + u| M (|u| + |∇u|), |u(x, t)| MeM|x| in (R \ BR) × [0, T ] and u(x, 0) = 0 for x ∈ R \ BR must vanish identically in R \ BR × [0, T ].
متن کاملHomogenization of forward-backward parabolic equations
We study the homogenization of the equation R(εx) ∂uε ∂t −∆uε = f , where R is a periodic function which may vanish or change sign, with appropriate initial/final conditions. The main tool is a compactness result for sequences of functions which have bounded norms in the spaces associated to the problems.
متن کاملLinear Stability of Selfsimilar Solutions of Unstable Thin-film Equations
We study the linear stability of selfsimilar solutions of long-wave unstable thin-film equations with power-law nonlinearities ut = −(u nuxxx + u mux)x 0 < n < 3, n ≤ m Steady states, which exist for all values of m and n above, are shown to be stable if m ≤ n + 2 when 0 < n ≤ 2, marginally stable if m ≤ n + 2 when 2 < n < 3 and unstable otherwise. Dynamical selfsimilar solutions are known to e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2009
ISSN: 0893-9659
DOI: 10.1016/j.aml.2008.07.018